16,627 research outputs found

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    The angular momentum of a magnetically trapped atomic condensate

    Full text link
    For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B-field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this paper we investigate the relationship between the values of the sum/difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.Comment: 4 pages, 1 figure

    Entanglement and spin squeezing properties for three bosons in two modes

    Full text link
    We discuss the canonical form for a pure state of three identical bosons in two modes, and classify its entanglement correlation into two types, the analogous GHZ and the W types as well known in a system of three distinguishable qubits. We have performed a detailed study of two important entanglement measures for such a system, the concurrence C\mathcal{C} and the triple entanglement measure Ď„\tau. We have also calculated explicitly the spin squeezing parameter Îľ\xi and the result shows that the W state is the most ``anti-squeezing'' state, for which the spin squeezing parameter cannot be regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P

    Exotic Topological States with Raman-Induced Spin-Orbit Coupling

    Full text link
    We propose a simple experimental scheme to realize simultaneously the one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold pseudospin-1/21/2 atomic Fermi gases trapped in square optical lattices. In the absence of interspecies interactions, the system supports gapped Chern insulators and gapless topological semimetal states. By turning on the ss-wave interactions, a rich variety of gapped and gapless inhomogeneous topological superfluids can emerge. In particular, a gapped topological Fulde-Ferrell superfluid, in which the chiral edge states at opposite boundaries possess the same chirality, is predicted.Comment: 11 pages, 6 figure

    Synthesis, characterization and crystal structure of a dioxomolybdenum(VI) complex derived from N’-(2-hydroxy-4-diethaylaminobenzylidene)-4-hydroxybenzohydrazide

    Get PDF
    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N’-(2-hydroxy-4-diethaylaminobenzylidene)-4-hydroxybenzohydrazide (H2L) in methanol afforded a methanol-coordinated mononuclear molybdenum(VI) oxo complex, [MoO2L(MeOH)]. Crystal and molecular structure of the complex were determined by single crystal X-ray diffraction method. The complex was further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates to the MoO2 core through enolate oxygen, phenolate oxygen and azomethine nitrogen. The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414.DOI: http://dx.doi.org/10.4314/bcse.v28i3.1

    A conditional quantum phase gate between two 3-state atoms

    Get PDF
    We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data-bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data-bus. In addition, it only requires common addressing of the two atoms by external laser fields.Comment: 8 fig
    • …
    corecore